The generator matrix

 1  0  0  0  0  0  1  1  1  0  1  X  1  1  1  X  1  X  1  0  1  X  0  1  X  X  1  X  1  1  X  1  1  1  1  1  0  1  1  0  0  0  1  1  1  1  1  1  0  1  1
 0  1  0  0  0  0  0  0  0  0  0  0  X  1 X+1  1  1  1 X+1  1 X+1  X  1  X  1  1 X+1  1  0 X+1  X  0  1 X+1  1  1  1  X  0  0  1  X  1  X  0  1  1  1  1 X+1 X+1
 0  0  1  0  0  0  0  0  X  X  1  1 X+1  0  0  X X+1 X+1 X+1 X+1  0  1  X X+1  0  1 X+1 X+1 X+1  X  1 X+1  1 X+1  1  X  1  X X+1  1  X  1 X+1  1 X+1  0  1 X+1  0  X  0
 0  0  0  1  0  0  X  1 X+1  1  0  1  1  0 X+1  1  X X+1  0 X+1  1  1  0  X  1  0 X+1  0 X+1  0  X  X  1  1 X+1  0  X  X  1  0  X  1 X+1  X  X  X  1  X  X  1  1
 0  0  0  0  1  0 X+1  1  0  1  X X+1 X+1  X  1  1  0  X  1  1  0  0  1 X+1  X  1  X  0  X X+1  1 X+1  1 X+1  1  X X+1  1  1  1 X+1  X  1  1  X  0  X  X X+1 X+1  X
 0  0  0  0  0  1  1  X  1  1 X+1  X  1  1 X+1  0  0  0  1  1  X X+1 X+1  X X+1  X X+1  1  X  0  1  X  X X+1 X+1  X X+1  X  0  X  X  X  0 X+1 X+1  X  1  1  X  0 X+1

generates a code of length 51 over Z2[X]/(X^2) who�s minimum homogenous weight is 42.

Homogenous weight enumerator: w(x)=1x^0+122x^42+400x^44+510x^46+561x^48+504x^50+496x^52+508x^54+473x^56+294x^58+158x^60+46x^62+20x^64+2x^68+1x^72

The gray image is a linear code over GF(2) with n=102, k=12 and d=42.
This code was found by Heurico 1.16 in 1.62 seconds.